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Abstract. A different approach to the problem of uniform approxima-
tions by the module of bi-analytic functions is outlined. This note follows
the ideas from [8, 10, 9, 11, 6] and the more recent paper [1], regarding ap-
proximation of z by analytic functions.

1 Introduction

The ideas sketched in this note were inspired by the talk of J. Verdera at the
Approximation Theory Conference dedicated to A. Boivin held at the Fields In-
stitute in Toronto in July 2016 . Denote by R2(K) the uniformly closed rational
module generated by functions f(ζ)+ z̄g(ζ), with f and g analytic in the neigh-
borhood of a compact set K in C. Equivalently, R2(K) is the uniform closure
on K of functions f(ζ) + z̄(ζ), with f, g being rational functions with poles off
K, i.e., f, g ∈ R(K).

The bi-analytic rational module R2, and more generally RN (K) generated
by f1(ζ) + z̄f2(ζ) + · · ·+ z̄N−1fN (ζ), fj ∈ R(K) have been studied intensely in
the ’70s and ’80s — cf., e.g., [18, 16, 17, 19, 14, 15]. The subject remained dor-
mant after that for almost two decades until a remarkable result of Masalov [13]
extending Mergelyan’s approximation theorem to the rational modules setting.

Here, we want to suggest a different point of view on the approximation by
bi-analytic functions based on extending the notion of “analytic content” in [6,
2] to this setting. Namely, let us accept the following definition:

Definition 1. Let λ2(K) := inf
φ∈R2(K)

∥∥∥ z̄2

2 − φ
∥∥∥
C(K)

, and call λ2 the bi-analytic

content of K.

(From now on, ∥ · ∥ = ∥ · ∥C(K) unless otherwise specified.) The analogy
with λ(K), the analytic content defined first in [8], is clear. Indeed, λ(K) :=

inf
φ∈R(K)

∥z̄ − φ(z)∥, R(K) = Ker ∂̄∥·∥ while ∂
∂ z̄ (z̄) = 1, making z the simplest

non-analytic function. R2(K) = Ker ∂̄2
∥·∥ and ∂̄2

(
z̄2

2

)
= 1.
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2 An “Analogue” of the Stone–Weierstrass theorem

The following simple proposition supports the introduction of λ2(K) — cf. [9,
11].

Proposition 1. λ2(K) = 0 iff R2(K) = C(K).

Proof (Sketch). The necessity is obvious. To see the sufficiency, note that λ2(K) =
0 yields z̄2 ∈ R2(K). Hence one can approximate z̄2 by functions r1(z) + z̄ r2.
Thus, for any r ∈ R2(K) we have rz̄2 ∼ rr1 + z̄rr2, where we put “∼” for “ap-
proximate uniformly”. Hence, z̄3 ∼ z̄ (r1 + z̄ r2) ∼ z̄r1 + (r3 + r4 z̄) ∈ R2(K),
where all rj ∈ R(K). Hence, z̄3 ∼ r5 + z̄r6 and then z̄2 (r7 + z̄ r8) ∈ R2(K)
since z̄3r8 ∼ (r5 + z̄ r6) r8 ∈ R2(K). A straightforward induction yields that
all monomials z̄nzm are approximable by R2(K). Weierstrass’ approximation
theorem finishes the argument.

3 Green’s Formula and Duality

As is well-known, the fundamental solution for ∂̄2 is − 1
π

z̄
z . Hence, Green’s for-

mula yields immediately the following (cf. [16]).

Lemma 1. For any φ ∈ C∞
0 and any z ∈ C, we have

φ(z) = −
∫
C

∂2φ(ζ)

∂ ζ
2

ζ − z

ζ − z
dA(ζ). (1)

(Here and onward, dA(ζ) denotes the normalized area measure 1
π dx dy.)

Lemma 2.

λ2(K) = max
z∈K

∣∣∣∣∫
K

ζ − z

ζ − z
dA(ζ)

∣∣∣∣ . (2)

Proof. (A sketch, since the argument is standard, cf., e.g., [6].) Extend 1
2 z

2 to
φ0 ∈ C∞

0 with the support in a fixed disk D = {z : |z| ≤ R < ∞}. For ϵ > 0, let
Ωϵ be a smoothly bounded ϵ-neighborhood of K. For z ∈ K, split the integral
in (1) into three parts:∫

D\Ωϵ

+

∫
Ωϵ\K

+

∫
K

=: I + II + III.

I ∈ R2(K), ∥II∥ ≤ const(φ0)Area(Ωϵ \ K), and the statement follows since

∂
2

zφ0 ≡ 1 on K.

Set

F (z) :=

∫
K

ζ − z

ζ − z
dA(ζ). (3)

Clearly, F (z) ∈ C1
(
R2

)
. Thus, max

z∈K
|F (z)| occurs somewhere on K.

Let Ra = Ra(K) =

√
Area(K)

π denote the radius of a disk with the same
area as K.
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Lemma 3. λ2(K) ≤ R2
a. Moreover, sup {λ2(K) : Area(K) is fixed} = R2

a, al-
though there is no “extremal” set K for which equality occurs.

Proof. The first statement follows from Lemma 2 since the integrand in (3) is
bounded by 1. The rest follows at once if one considers a sequence of “cigar-
shaped” domains Ωn with a fixed area symmetric with respect to the x-axis and

tangent to the y-axis at the origin. Then, F (0) → R2
a since ζ̄

ζ → 1 pointwise on
Ωn and is bounded by 1, so the Lebesgue bounded convergence theorem applies.

Remark 1. Recall that unlike the bi-analytic content, the analytic content (λ(K) :=
distC(K) (z̄, R(K)) is bounded above by Ra and the equality holds for disks and
only for disks modulo sets of area zero(cf. [2, 6]).

4 Bi-analytic Content of Disks

Proposition 2. Let D = {z : |z| ≤ R}. Then, λ2

(
D
)
= 1

2 R
2.

Proof. By taking φ ≡ 0 ⊂ R2

(
D
)
, we see that λ2

(
D
)
≤ 1

2 R
2. To obtain the

converse inequality, note that for any polynomials P1, P2 we have∥∥∥∥12 z̄2 − P1 − z̄ P2

∥∥∥∥
D

≥
∥∥∥∥12 z̄2 − P1 − z̄ P2

∥∥∥∥
∂D

≥ inf
P1,P2

1

R2

∥∥∥∥12 R4 − z2P1 − P2R
2z

∥∥∥∥
∂D

= inf
P :P (0)=0

∥∥∥∥12 R2 − P (z)

∥∥∥∥
∂D

=
1

2
R2.

(4)

(The latter infimum is a trivial extremal problem in H∞(D)-setting (cf. [3], [12,
Ch. 8]) and is easily computable, e.g., by duality:

inf
f∈H∞(D)
f(0)=0

∥C − f∥∂D = C sup
f∈H1(D)
∥f∥H1=1

∣∣∣∣∫
∂D

f ds

∣∣∣∣ = C,

for any constant C > 0.) Since P1, P2 were arbitrary, the proposition follows.

5 Bounds for λ2

The following statement is obvious.

Corollary 1. Let Kbe a compact subset ofC and the outer and inner radii Ro, Ri

denote, respectively, the minimal radius of a disk containing K (i. e.,Ro), and
the maximal radius of a disk contained in K. Then,

1

2
R2

i ≤ λ2(K) ≤ R2
o. (5)
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(Of course, here, we tacitly used Runge’s theorem in its simplest form:
R
(
D
)
= uniform closure of polynomials, for any disk D.)

Corollary 2 ([16]). R2(K) = C(K) if and only if K is nowhere dense.

The necessity follows at once from the lower bound in (5) and Proposition 1.
The proof of sufficiency, given by Trent and Wang in [16], cannot be shortened
or simplified any further. Thus, for the reader’s convenience, we only indicate
the outline.

(i) By the Hahn–Banach theorem it suffices to check that µ annihilating
R2(K) must be zero, i.e., annihilates all C∞

0 -functions.
(ii) By Lemma 1 and Fubini’s theorem, it suffices to check that an R2-analogue

of the Cauchy transform for µ

µ̌(z) :=

∫
C

ζ − z

ζ − z
dµ(ζ) (6)

vanishes a.e. wrt dA.
(iii) The Lebesgue bounded convergence theorem yields that µ̌ is continuous

in C except at atoms of µ, i.e., at at most countably many points.
(iv) If K is nowhere dense, µ̌ vanishes in C \K, and by (iii) in all of C except

for a countable set and the proof is finished.

6 Concluding Remarks

(i) Undoubtedly, the above scheme can be extended to more general “rational

modules” associated with the operator ∂z
N
, i.e., to RN (K).

(ii) Most likely, one may consider the bi-analytic content or, more generally,
N -analytic content for other norms than the uniform norm, e.g., Bergman
Lp-norms, Hardy norms, etc. The recent results in that direction for the
analytic content ([7, 4, 5]) yield some interesting connections and the latter
continue forthcoming.

(iii) It would be interesting to tighten the inequality (5), perhaps obtaining
sharper bounds that might involve deeper geometric characteristics of K,
e.g., perimeter, capacity, torsional rigidity. For the analytic content this
line of inquiry proved to be quite fruitful (cf. [7, 4, 5], cited above).
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